Incorporating Learning
and Expected Cost of Change
in Prioritizing Features
on Agile Projects

R. Scott Harris! and Mike Cohn?

'Montana State University—Billings
Mountain Goat Software

Business value

® Usual advice to product owners is to
prioritize based on “business value”

® But what is business value!?
® Putting the competition out of business?
® Lowering delivery cost!?
® Increasing short term revenue!?

® Achieving cash-flow breakeven!?

®

Tuesday, June 20, 2006

(B

Telling a product owner to “prioritize on
business value” offers as much guidance
as the president of General Motors
ordering a lathe operator to “maximize
corporate profits.”

§ ‘—‘ opyr f;"'? Mountain ’-/—‘::"‘,(; fow are, “_(

Traditional advice

® Saaty’s Analytic Hierarchy Process is often
considered “the most promising approach”

® Involves pairwise comparison of all features
® Perhaps feasible once at the start of a project

® Assumes perfect knowledge

® Agile projects incorporate and acknowledge
learning and feedback

® Not feasible every iteration on an agile project

Tuesday, June 20, 2006

Three guidelines

|. Defer features with high expected
costs of change

2.Bring forward features that
generate useful knowledge

3.Incorporate new learning often, but
only to decide what to do next

§ Copyright Mountain Goat Software, LLC

Guideline |
Defer features with high expected costs
of change

® Expected Cost of Change = ECC

[ECC = (probability of change) * (cost of change)]

® Overall expected cost can be lowered if features
that are likely or costly to change are deferred

® We'll know more later so deferring these means we're
more likely to get them right

§ C opyright Mountain Goat Software, LLC

Tuesday, June 20, 2006

Expected Cost of Change

ECE
ECCy

ECC

/CC2

Time

®

A ~ Cag
ountain Goat Software, LL

An implication

® Because of this we want to:

® Prioritize activities that have the greatest impact
on lowering the ECC curve

® This leads to:

Guideline 2
Bring forward features that generate
useful knowledge

§ C opyright Mountain Goat Software

Tuesday, June 20, 2006

Useful knowledge

® Comes in a variety of forms
® About the desirability of a feature
® About the usability of a feature

® About the technical feasibility of a feature

® Useful knowledge is knowledge that will affect
prioritization of subsequent features

® Product owner asks herself,“If this feature had been
implemented already, would | do anything differently?”

§ ‘—‘ opyr f;"'? Mountain ’-/—‘::"‘,(; fow are, “_(

Guideline 3
Incorporate new learning often, but only to
decide what to do next

® | earning is a continuous process

® Agile projects acknowledge that all learning cannot be
put upfront (as sequential projects try)

® So, decision-making about priorities is simplified
® “Now’”’ vs.“Not Now”
® Those not done “Now’’ are reevaluated next iteration

® Supports agile preference for short iterations

§ Copyright Mountain Goat Software, LLC

Tuesday, June 20, 2006

10

Release plans still necessary

® Release plans are still useful and often
necessary

® Help establish a vision for where a project wants
to end up

® But should not detail iteration by iteration
sequencing details

§ Copyright Mountain Goat Software, LLC

Practical application

® Qur advice to clients:

® Perform rough, initial prioritization based on the
“business value” of each feature

® Don’t bother prioritizing beyond the next |-3
iterations

® Think of ECC and knowledge generated as sliders

® Move items forward or back in the prioritization

®

Tuesday, June 20, 2006

11

12

Example: architecture

® Consider a feature that:

® Has significant architectural
implications

® Does not have an exceptionally high

ECC

® Will generate significant new
knowledge

® Based on ECC, feature does not slide

backward

® Based on knowledge generated,
S feature does slide forward

Copyright Mountain Goat Software, LLC

Some examples

® We've used this to support early selection of:

® A particular application server

® Features to test designs for a security framework

® Features that confirm main metaphors of the user

interface design

® We've used this to defer decisions with high
ECC that generate little new knowledge

® Choosing among three client technologies

®

Copyright Mountain Goat Software, LLC

Tuesday, June 20, 2006

13

14

Conclusions

® More useful than advice to prioritize on “business
value”

® [nstructing product owners to
® consider relative changes in Expected Cost of Change (ECC)
® amount and significance of knowledge generated
leads to better decisions

® Guideline-based approach is easy

® Keeps focus on “what one thing should we do next” rather
than “what is full set of priorities”

® More iterative approach to prioritizing acknowledges
learning and fits with agile approach better

Tuesday, June 20, 2006

15

